
CSCC09 Week 4 Notes
1

REST APIs:
- An ​API​ is a set of definitions and protocols for building and integrating application

software. It’s sometimes referred to as a contract between an information provider and
an information user.
I.e. If you want to interact with a computer or system to retrieve information or perform a
function, an API helps you communicate what you want to that system so it can
understand and fulfill the request.
I.e. An API is a set of rules that allows programs to talk to each other.

- An ​endpoint​ is the location from which APIs can access the resources they need to
carry out their function. For web APIs, endpoints are usually URLs.

- REST​ stands for ​representational state transfer​ and was created by computer scientist
Roy Fielding.

- REST APIs​ are also known as ​RESTful APIs​.
- A REST API is an API that conforms to the constraints of REST architectural style and

allows for interaction with RESTful web services.
Note:​ ​REST is a set of architectural constraints, not a protocol or a standard. API
developers can implement REST in a variety of ways.

- When a client request is made via a RESTful API, it transfers a representation of the
state of the resource to the requester or endpoint. This representation is delivered in one
of several formats via HTTP, of which JSON is the most popular to use because it’s
language-agnostic and readable by both humans and machines.

- In order for an API to be considered RESTful, it has to conform to these criteria:
1. A client-server architecture made up of clients, servers, and resources, with

requests managed through HTTP.
2. Stateless client-server communication, meaning no client information is stored

between get requests and each request is separate and unconnected.
3. Cacheable data that streamlines client-server interactions.
4. A uniform interface between components so that information is transferred in a

standard form. This requires that:
a. resources requested are identifiable and separate from the

representations sent to the client.
b. resources can be manipulated by the client via the representation they

receive because the representation contains enough information to do so.
c. self-descriptive messages returned to the client have enough information

to describe how the client should process it.
d. hypertext/hypermedia is available, meaning that after accessing a

resource the client should be able to use hyperlinks to find all other
currently available actions they can take.

5. A layered system that organizes each type of server involved in the retrieval of
requested information into hierarchies, invisible to the client.

6. Code-on-demand: The ability to send executable code from the server to the
client when requested, extending client functionality.

- The function names of a REST API consist of the HTTP method and the URL.
- The function arguments of a REST API consist of a URL and the request body. The

return value of a function is a status code and the response body.

CSCC09 Week 4 Notes
2

- E.g.

- The server is more or less a storage system that stores:

1. Collections/Resources
2. Elements that belong to one or several collections.

For example, in the example above, in the third row, messages is a collection while 78 is
an element.

- Usually, the pattern is collection/element/collection/element/etc.
- E.g.

Here, in the first row, users is a collection while sansthie is an element, and profile is a
collection while firstname is an element.

- REST APIs have 3 relationships:
1. One-to-one
2. One-to-many
3. Many-to-many

CSCC09 Week 4 Notes
3

CRUD Operations:
- CRUD stands for:

- Create
- Read
- Update
- Delete

- They are 4 basic functions of persistent storage.
- How HTTP methods map to CRUD operations:

- PUT vs POST:

Note:​ These are just guidelines. The implementation details are left up to the
developers.

- We can use attributes to query/filter a subset of a collection.
E.g. GET /messages/?from=67&to=99

PUT POST

PUT is idempotent. So if you send a request
multiple times, that should be equivalent to a
single request modification.

POST is NOT idempotent. So if you
send a request N times, you will
end up having N resources.

Use PUT when you want to modify a singular
resource which is already a part of resources
collection. PUT replaces the resource in its
entirety. Use PATCH if the request updates part
of the resource.

Use POST when you want to add a
child resource under resources
collection.

Generally, in practice, use PUT for UPDATE
operations that replaces the resource in its
entirety.

Use POST for CREATE operations.

CSCC09 Week 4 Notes
4

- HTTP Methods for RESTful Services:

Note:​ Once again, these are just the guidelines.
Handling Data:

- To handle data, we’ll use a database.
- We use a database because:

- Persistency
- Concurrency (avoid race conditions)
- Query
- Scalability

- SQL vs NOSQL databases:

- The concept of NoSQL databases became popular with internet giants like Google,
Facebook, Amazon, etc who deal with huge volumes of data. The system response time
becomes slow when you use RDBMS for massive volumes of data.

HTTP Verb CRUD Entire Collection (e.g.
/customers)

Specific Item (e.g.
/customers/{id})

POST Create 201 (Created), 'Location'
header with link to
/customers/{id} containing
new ID.

404 (Not Found), 409
(Conflict) if resource
already exists.

GET Read 200 (OK), list of customers.
Use pagination, sorting and
filtering to navigate big lists.

200 (OK), single
customer. 404 (Not
Found), if ID not found
or invalid.

PUT Update/Replace 405 (Method Not Allowed),
unless you want to
update/replace every
resource in the entire
collection.

200 (OK) or 204 (No
Content). 404 (Not
Found), if ID not found
or invalid.

PATCH Update/Modify 405 (Method Not Allowed),
unless you want to modify
the collection itself.

200 (OK) or 204 (No
Content). 404 (Not
Found), if ID not found
or invalid.

DELETE Delete 405 (Method Not Allowed),
unless you want to delete
the whole collection—not
often desirable.

200 (OK). 404 (Not
Found), if ID not found
or invalid.

Parameter SQL NOSQL

Type Are table based databases Can be document based, key-value
pairs, or graph databases.

Schema Have a predefined schema Use dynamic schema for
unstructured data.

Ability to scale Are vertically scalable Are horizontally scalable

CSCC09 Week 4 Notes
5

To resolve this problem, we could ​scale up​ our systems by upgrading our existing
hardware. This process is expensive. (SQL uses scaling up.)
The alternative for this issue is to distribute the database load on multiple hosts
whenever the load increases. This method is known as ​scaling out​. (NOSQL uses
scaling out.)

- ORM (Object Relational Mapping):
- ORM​ is a technique that lets you query and manipulate data from a database using an

object-oriented paradigm. It provides a mapping between objects and the database
structure.

- An ORM library is a library written in your language of choice that encapsulates the code
needed to manipulate the data, so you don't use SQL anymore. You interact directly with
an object in the same language you're using.

- A few advantages of using ORMs are:
- You write your data model in only one place, and it's easier to update, maintain,

and reuse the code. (DRY principle)
- It sanitizes the query statement, preventing SQL injections.

- Examples:
- Sequelize for PostgreSQL, MySQL, MariaDB, SQLite
- Mongoose for MongoDB

CSCC09 Week 4 Notes
6

Connecting the REST API with a database:
- Do retrieve selected elements only rather than retrieving an entire collection and filtering

afterwards. This is because the database is going to be bigger than the memory capacity
of the backend, so if you retrieve an entire collection, it could be dangerous.

- Do define primary keys rather than relying on auto-generated ones.
- Do split data into different collections rather than storing list attributes.
- Do create join collections whenever appropriate (only for NoSQL databases without

performant join feature).
- Only retrieve what you need from a potentially large collection. (Use pagination)

Handling Files:
- Recall that JavaScript in the browser cannot open and read files on the user’s

computer/desktop.
- The only way to upload files is through file input forms.

I.e.
<form . . . >
 <input type="file" name="img" multiple>
 ​(The multiple lets users upload multiple files at once.)
 <input type="submit">
</form>

- There are 2 ways to send a file from the browser:
1. Old Way:
- Form action (with page refresh)

E.g.
<form action="/url"
 method="POST"
 enctype="multipart/form-data">

- Note:​ The enctype=“multipart/form-data” tells the server that we’re going to send
a form that contains both text and binary data.

2. New Way:
- Ajax request (without page refresh)

E.g.
var file = document.get ...
var formdata = new FormData();
formdata.append("picture", file);
xhr.send(formdata);

- Note:​ We use FormData because we’re sending a mix of binary and text.
- The best approach is to store files on discs, but you can store files in databases.
- The server receives the following information:

- File metadata, which includes the filename, mimetype (file type), size and others.
- File content which is a compressed binary or string.

- MIME Type:
- MIME (Multipurpose Internet Mail Extensions)​ is also known as the content type.
- It defines the format of a document exchanged on the internet.
- Do/Don't with files:
- Do not send a base64 encoded file content with JSON, use multipart/form-data instead

(compression).
- Do not store uploaded files with the static content.
- Do not serve uploaded files statically. If you upload files statically, everyone can access

it, causing security issues.
- Do store the mimetype and set the HTTP response header mimetype when files are sent

back.

